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Abstract

Semantic models are fundamental to publish data
into Knowledge Graphs (KGs), since they encode
the precise meaning of data sources, through con-
cepts and properties defined within reference on-
tologies. However, building semantic models re-
quires significant manual effort and expertise. In
this paper, we present a novel approach based on
Graph Neural Networks (GNNSs) to build seman-
tic models of data sources. GNNSs are trained on
Linked Data (LD) graphs, which serve as back-
ground knowledge to automatically infer the se-
mantic relations connecting the attributes of a data
source. At the best of our knowledge, this is the
first approach that employs GNNs to identify the
semantic relations. We tested our approach on 15
target sources from the advertising domain (used
in other studies in the literature), and compared
its performance against two baselines and a tech-
nique largely used in the state of the art. The
evaluation showed that our approach outperforms
the state of the art in cases of data source with
the largest amount of semantic relations defined
in the ground truth.

1. Introduction

Knowledge Graphs (KGs) are labeled multi-graphs that en-
code information as facts in the form of semantic entities
and relations, which are relevant to a specific domain. Pub-
lishing data into KGs is a complex and time-consuming
process, that typically requires extracting and integrating
information from heterogeneous sources. The practice of
integrating information from diverse types of data sources,
such as CSVs, XMLs, and JSONs implies the construction
of a map between the attributes of the data source and the
concepts and properties defined by one or more ontologies
(Gangemi, 2005). This map is formalized as a directed
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graph called semantic model, whose leaf nodes represent
the attributes of the original data source, while the other par-
ent nodes and edges derive from the properties and relations
described in the reference ontologies. In order to transform
the data source to KG facts, a semantic model can be used to
automatically define rules in different mapping languages,
such as RML (Dimou et al., 2014), R2ZRML (Das et al.,
2016), TARQL (Cyganiak, 2015), or JARQL (Schiavone
et al., 2018). Although semantic models can speed up the
process of building a Knowledge Graph, its construction is
a time-intensive task, since it requires significant effort and
domain expertise, due to the potential variety and specificity
of the data sources involved (e.g., it can be data from the
Web or from private data lakes). In addition, the automatic
extraction of the intended meaning of the data is a challeng-
ing process, which involves two main tasks. The first task
is the semantic labeling, whose goal is to annotate the at-
tributes of the data source with semantic labels (or semantic
types). The second task is the semantic relation inferenc-
ing, whose goal is to capture the relations between the data
source attributes. In this paper, we present a novel approach
based on Graph Neural Networks (GNNs) to automatically
identify the relations which connect already-annotated data
attributes. GNNs have become the standard framework
(Dwivedi et al., 2020) to learn from data on graphs for a
variety of purposes, i.e. node and link prediction. In our
method, GNNs are trained on Linked Data (LD) (Heath &
Bizer, 2011) graphs that contain semantic information and
act as background knowledge to reconstruct the semantics
of data sources: the intuition is that relations used by other
people to semantically describe data in a domain are more
likely to express the semantics of the target source in the
same domain. To measure the performance of our approach,
we compared the results achieved by our system against
ground-truth semantic models defined by domain experts.
Furthermore, the evaluation procedure shows that our ap-
proach outperforms the state of the art (Taheriyan et al.,
2016b) in case of data sources with the largest amount of
semantic relations, according to the ground-truth semantic
models.

2. Related Work

Influential works in the field (Taheriyan et al., 2013)
(Taheriyan et al., 2016a) (Taheriyan et al., 2016b) indicate
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that research efforts in semantic modeling focused so far
mainly on the semantic labeling, while less attention has
been given to the automatic inference of semantic relations.
The motivation for this observed trend has to be found in the
complexity of the second step: in fact, even when semantic
labels are properly defined with human intervention, infer-
ring the relations through an automatic mechanism is not
trivial and it is still an open issue in research. In addition,
in more complex - but not unusual - situations, semantic
labels can be connected through multiple paths that include
different sequences of ontology classes and properties. As
a consequence, without explicit and additional background
context, it is difficult to identify which paths - or in other
words which semantic relations - define the actual meaning
of the data. Following this direction, the most promising
approaches exploit background LD graphs, which include
a vast amount of meaningful information, that can be used
to learn how different entities are related to each other. As
demonstrated by the work of Taheriyan et al. (Taheriyan
et al., 2016b), a background knowledge is helpful to select
a path representing the correct semantic interpretation of
the target source. We took inspiration from this work to
develop a novel mechanism based on GNNs for inferring
semantic relations between data source attributes. The most
important difference between our approach and the work
of Taheriyan et al. (Taheriyan et al., 2016b) is that the lat-
ter manually extracts graph patterns to represent semantic
relations of different lengths. In our approach, instead, the
GNNs automatically learn entity and property representa-
tions, encoding the local multi-graph structures available in
the LD. These representations are then exploited to identify
the correct semantic relations within the target data source.

3. Problem definition

The problem of modeling the semantics of a data source is
defined as follows. Suppose we have a target data source ds,
which includes a set of attributes ds{ay, as, as, ...}, and an
ontology O. The semantic model of ds is defined as sm/(ds),
whose generation is based on two different steps. The first
step is the semantic labeling, where each attribute of ds is
labeled with a pair of an ontology class and a data property:
sli(a1) = {Cay, Pa, )- The second step is the inference of the
semantic relations between these semantic labels, expressing
the intended meaning of the data. In the simplest case, the
relation between two classes of the semantic labels includes
only an object property: sr1(sli, slo) = q, =2+ ¢q,. In
this case the length of the path is equal to 1. In most complex
situations, the relation covers different ontology classes and
properties sri(sly, sla) = cq, LN LN Cay- In this
case the length of the path is equal to 2.

4. Methodology

The starting point of our method is a multi, directed,
and weighted graph, called integration graph: G,y =
Vint, Eint. Gint describes the combinatorial space of all
plausible semantic relations within the target source. The
initial version of G, is created from already annotated
data source attributes and the ontology O, following the
approach described by (Knoblock et al., 2012). Identifying
the correct semantic relations in G;,; corresponds to the
detection of the minimum spanning tree, also called Steiner
Tree (Hwang & Richards, 1992), in GG;,,;. Considering that
the detection of the Steiner Tree is driven by the costs as-
sociated to E;,,;, the goal of our methodology is to update
these costs, whose role is to encode the correct interpreta-
tion of the data. To assign these costs, we employ a GNNs
architecture, which learns entity and property features of
LD graph, representing the background knowledge. The
“recursive neighborhood diffusion” (Dwivedi et al., 2020)
to assign entity features is based on an extension of the
Vanilla Graph ConvNets (GCNs) (Kipf & Welling, 2016)
formulation called Relational Graph ConvNets (R-GCNs)
(Schlichtkrull et al., 2018):
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hl € R%" denotes the hidden state of the LD entity ¢ in
the [-th layer of the GNNs. Vij is the set of indices of
the neighbors j of entity ¢ under the LD property e € E.
U'! is the matrix of the network parameters. By stacking
up several layers, it is possible to capture and encode the
relations between LD entities across multiple steps.

The function to score the predicted facts is the well-known
matrix factorization algorithm called DistMult (Yang et al.,
2014):

f (Sapv O) = (th)T Rei,j h‘jL 2
h¥ is the state of the entity i, as output of the recursive
neighborhood diffusion. The features of the edge e are
associated to a diagonal matrix R,, ; € R**?. The training
of GNNSs are performed with negative sampling. For each
training sample, a set of negative samples w is generated by
randomly corrupting either s or o. The network is optimized
so that the positive facts are scored higher than the negative
ones. The predicted fact score is equal to:

g=0(f(s,p0)) 3)

The cross entropy loss associated to each predicted fact is
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computed as follows:

1
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F is a subset of the LD edges included in the training set,
w is the number of negative samples. The features of s, p,
and o are computed during the network optimization. Then,
the features and the scoring function are employed to com-
pute the score of unseen facts, resulting from each plausible
semantic relation in the integration graph. Each plausible
relations allows to create a set of mapping language rules.
These rules can used to generate a set of candidate facts
{(s,p,0), ..} from the data included in the source ds. s and
o are instances of the ontology classes (nodes in the integra-
tion graph) included in sr, while p is an ontology property
(edge in the integration graph) included in sr. The score of
the facts associated to each plausible relation is computed
with equation 3. Considering this score computation, the
cost of each edge of the integration graph is the following:
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On the basis of the edges cost, the minimum spanning tree
which connect all semantic labels (Steiner Tree) is detected
in order to compute the most plausible semantic model,
which includes the correct semantic relations to define the
precise meaning of the data.

5. Evaluation

Dataset: the dataset includes 15 target sources available in
JSON format on the advertising domain (Taheriyan et al.,
2016b). The domain ontology is an extension of Schema.org
(Guha et al., 2016), which contains 736 classes and 1081
properties. To prepare the background LD for each target
source the leave-one-out setting has been employed. In
practice, if k is the number of sources in our dataset, the
background LD assigned to each target source is created
from the facts obtained by the other k£ — 1 sources. In other
words, each background LD includes facts which come from
all the sources, except those obtained from the target source.
Details on the dataset are available in Table 1.

Metrics: the performance of the GNNS is evaluated with
the Mean Reciprocal Rank (MRR). The accuracy of a com-
puted semantic model sm is measured in terms of precision
and recall, by comparing it against a ground-truth semantic
model smg;:

rel(smg) Nrel(sm)

(6)

precision = rel (Sm)

Table 1. Details on target sources, background linked data, and
ground truth semantic models

Sources #attrs Background LD Ground-Truth SMs
#entities #facts #labels #relations
alaskaslist 8 3396 6954 12 3
armslist 20 3396 6793 15 4
dallasguns 15 3379 6940 23 7
elpasoguntrader 8 3396 7044 13 4
floridagunclassifieds 16 3396 6904 23 6
floridaguntrader 10 3396 6774 15 4
gunsinternational 10 3396 6945 19 4
hawaiiguntrader 7 3396 7122 11 3
kyclassifieds 10 3396 6945 14 3
montanagunclassifieds 9 3396 7104 14 4
msguntrader 11 3375 7086 16 4
nextechclassifieds 20 3396 6198 32 11
shooterswap 11 3396 7041 15 3
tennesseegunexchange 14 3396 7104 21 6
theoutdoorstrader 12 3396 6784 18 5
recall — rel(smg) Nrel(sm) ™

rel(smgt)

where rel(sm) is the set of triples (u, v, e): e is an object
property from the ontology class u to the ontology class v.

Results: Table 2 reports: (i) details on the number of facts
included in the training set, the validation set, and the testing
set respectively; (ii) the resulting MRR on the testing set.

To measure the effectiveness of the GNNs on our back-
ground linked data, we compared our results with the MRR
values obtained by the GNNs on FB15-k237(Toutanova
& Chen, 2015). These MRR values reported in literature
(Schlichtkrull et al., 2018) are: (i) MRR Raw: 0.158; (ii)
Hits@1: 0.153; (iii) Hits@3: 0.258. MRR values obtained
on background LD (Raw and Hits@1) are higher than the
MRR values obtained on FB15-k237, therefore the GNNs
performed well on the evaluation dataset.

Table 3 reports the results in terms of precision and recall
achieved by: (i) our approach (Semi in the Table); (ii) the
approach of Taheriyan et al. (Taheriyan et al., 2016b)) (Tahe
in the Table); (iii) the baseline exploiting only the frequency
of semantic relations of length 1 (Occs in the Table); (iv)
the baseline using the steiner tree performed on a weighted
graph based on the ontology structure (Knoblock et al.,
2012) (Stei in the Table).

Our approach always obtained a better accuracy in terms of
precision and recall, compared to: (i) the baseline that cap-
tures the frequency of semantic relations of length 1; (ii) the
baseline of the steiner tree built on the graph weighted ac-
cording to the ontology structure. In this experiment we em-
ployed the dataset in which the Taheriyan et al. (Taheriyan
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Table 2. Number of facts in the training, the validation, and the testing set and the MRR values obtained by the GNNs on each background

linked data
Sources Background LD - #Facts Mean Reciprocal Rank (MRR)
Training  Validation  Testing Raw Hits@1 Hits@3

alaskaslist 6264 345 345 0.202556  0.171014  0.221739
armslist 6123 335 335 0.189313  0.156716  0.214925
dallasguns 6250 345 345 0.222723  0.201449  0.233333
elpasoguntrader 6344 350 350 0.175496  0.135714  0.198571
floridagunclassifieds 6214 345 345 0.213165 0.191304 0.224638
floridaguntrader 6104 335 335 0.207233  0.174627  0.229851
gunsinternational 6264 345 345 0.205095 0.188406 0.211594
hawaiiguntrader 6412 355 355 0.208059  0.180282  0.223944
kyclassifieds 6255 345 345 0.191376  0.163768  0.207246
montanagunclassifieds 6394 355 355 0.233740  0.212676  0.245070
msguntrader 6386 350 350 0.209148  0.188571  0.222857
nextechclassifieds 5588 305 305 0.204046  0.177049  0.216393
shooterswap 6341 350 350 0.226965 0.205714  0.241429
tennesseegunexchange 3694 355 355 0.203350  0.180282  0.214085
theoutdoorstrader 6114 335 335 0.185680 0.159701  0.205970

Table 3. Results of the semantic relation inference in terms of precision and recall

Sources Precision Recall
Semi  Tahe  Occs Stei Semi  Tahe  Occs Stei

alaskaslist 1 1 0.667 0 1 1 0.667 0
armslist 0.750 0.750  0.500 0 0.750 0.750  0.500 0
dallasguns 0.667 0.570 0.500 0 0.570 0.570 0.428 0
elpasoguntrader 0.500 1 0.500 0.250 | 0.500 0.750 0.500 0.250
floridagunclassifieds 0.833 0.800 0.167 0 0.833 0.670 0.167 0
floridaguntrader 1 1 0.750 0 1 1 0.750 0
gunsinternational 0.750 0.600 0.250 0 0.750 0.750 0.250 0
hawaiiguntrader 1 1 1 0 1 1 1 0
kyclassifieds 1 1 0.333  0.333 1 1 0.333 0.333
montanagunclassifieds  0.750 1 0.500 0 0.750 1 0.500 0
msguntrader 0.670 0.670 0.667 0 0.500 0.500 0.500 0
nextechclassifieds 0.454 1 0.182 0 0.454 0360 0.182 0
shooterswap 1 0.750 1 0 1 1 1 0
tennesseegunexchange  0.667 1 0.500 0.167 | 0.667 1 0.500 0.167
theoutdoorstrader 0.800 0.830 0.200 0.200 | 0.800 1 0.200  0.200

et al., 2016b) approach obtained the best results. The results
show that our approach outperforms the state of the art in
case of the following data sources: “dallasguns”, “florida-
gunclassifieds”, “gunsinternational”, and “shooterswap”.
These sources have the most complex structure in terms
of number of semantic labels and semantic relations in the
ground-truth semantic models (see Table 1 for more details).
On the other side, the performance in terms of precision
drops in presence of many data attributes within sources
that are characterized by the same semantic type (see “el-
pasoguntrader” and “nextechclassifieds”). For instance, the
“nextechclassifieds” source includes 5 different attributes
that are labeled with the ontology class “schema:Offer”. Ac-
cording to the ground-truth semantic model of this source,
the first attribute is linked to the other 4 attributes with

the same object property. Nevertheless, this type of graph
structure represents an anomaly because it never appears in
the background knowledge of “nextechclassifieds”. We be-
lieve that including in the background LD analogous graph
structures the performance should increase.

6. Conclusion

We proposed a novel GNNs-based model for automatically
building semantic models of data sources. Our proposed
approach achieves results comparable with the state-of-the-
art method in the field. In the future, we would like to
investigate more effective GNNs architectures to learn graph
structures available in the background LD, to improve the
accuracy of the computed semantic models.
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